Generating the Generator: A User-Driven and Template-Based Approach towards Analog Layout Automation

Author:

Prautsch Benjamin1ORCID,Eichler Uwe1,Hatnik Uwe1

Affiliation:

1. Fraunhofer IIS/EAS, Institute for Integrated Circuits, Division Engineering of Adaptive Systems, 01187 Dresden, Germany

Abstract

Various analog design automation attempts have addressed the shortcomings of the still largely manual and, thus, inefficient and risky analog design approach. These methods can roughly be divided into synthesis and procedural generation. An important key aspect has, however, rarely been considered: usability. While synthesis requires sophisticated constraints, procedural generators require expert programmers. Both prevent users from adopting the respective method. Thus, we propose a new approach to automatically create procedural generators in a user-driven way. First, analog generators, which also create symbols and layouts, are utilized during schematic entry to encapsulate common analog building blocks. Second, automatic code creation builds a hierarchical generator for all views with the schematic as input. Third, the approach links the building block generators with the layout through an object-oriented template library that is accessible through generator parameters, allowing the user to control the arrangement. No programming is required to reach this state. We believe that our approach will significantly ease the transition of analog designers to procedural generation. At the same time, the templates allow for a “bridge” to open frameworks and synthesis approaches so that the methodologies can be both better spread and combined. This way, comprehensive frameworks of both synthesis-based and procedural-based analog automation methods can be built in a user-driven way, and designers are enabled to gain early layout insight and ease IP reusability.

Funder

German Federal Ministry of Education and Research

Fraunhofer-Gesellschaft

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3