A Semi-Fragile, Inner-Outer Block-Based Watermarking Method Using Scrambling and Frequency Domain Algorithms

Author:

Senol Ahmet1ORCID,Elbasi Ersin2ORCID,Topcu Ahmet E.2,Mostafa Nour2ORCID

Affiliation:

1. Computer Engineering Department, Üsküdar University, Istanbul 34662, Turkey

2. College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait

Abstract

Image watermarking is most often used to prove that an image belongs to someone and to make sure that the image is the same as was originally produced. The type of watermarking used for the detection of originality and tampering is known as authentication-type watermarking. In this paper, a blind semi-fragile authentication watermarking method is introduced. Although the main concern in this paper is authenticating the image, watermarking for proving ownership is additionally implemented. The method considers the image as two main parts: an inner part and an outer part. The inner and outer parts are divided into non-overlapping blocks. The block size of the inner and outer part are different. The outer blocks have a greater area than the inner blocks so that their watermark-holding capacity is greater, providing enough robustness for semi-fragility. The method is semi-fragile and the watermarked image is authenticated despite the JPEG being compressed to 75% quality. The embedded watermark also survives innocent types of image operations, such as intensity adjustment, histogram equalization and gamma correction. Semi-fragile and selectively fragile authentication is valuable and in high demand specifically because it survives these innocent image operations while detecting ill-intentioned tampering. In this work, we embed a binary watermark into the inner and outer parts of images using a scrambling algorithm, discrete wavelet transform (DWT) and discrete cosine transform (DCT) in the blocks. The proposed methodology has high image quality after watermarking, with a PSNR value of 40.577, and high quality is also achieved after JPEG compression. The embedding process provides acceptable image quality after tamper attacks, including JPEG compression, Gaussian noise, average filtering, and scaling attacks with PSNR values greater than 29. Experimental results obtained show that the proposed semi-fragile watermarking algorithm is more robust, secure and resistant than other algorithms in the literature.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3