On the Introduction of Canny Operator in an Advanced Imaging Algorithm for Real-Time Detection of Hyperbolas in Ground-Penetrating Radar Data

Author:

Bugarinović Željko,Pajewski LaraORCID,Ristić Aleksandar,Vrtunski Milan,Govedarica MiroORCID,Borisov MirkoORCID

Abstract

This paper focuses on the use of the Canny edge detector as the first step of an advanced imaging algorithm for automated detection of hyperbolic reflections in ground-penetrating radar (GPR) data. Since the imaging algorithm aims to work in real time; particular attention is paid to its computational efficiency. Various alternative criteria are designed and examined, to fasten the procedure by eliminating unnecessary edge pixels from Canny-processed data, before such data go through the subsequent steps of the detection algorithm. The effectiveness and reliability of the proposed methodology are tested on a wide set of synthetic and experimental radargrams with promising results. The finite-difference time-domain simulator gprMax is used to generate synthetic radargrams for the tests, while the real radargrams come from GPR surveys carried out by the authors in urban areas. The imaging algorithm is implemented in MATLAB.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference63 articles.

1. Introduction to Ground Penetrating Radar: Inverse Scattering and Data Processing;Persico,2014

2. Ultra-Wideband Radar Technology;Taylor,2000

3. Buried pipe localization using an iterative geometric clustering on GPR data

4. GPR system performance compliance according to COST Action TU1208 guidelines;Pajewski;Ground Penetr. Radar,2018

5. A new method to simultaneously estimate the radius of a cylindrical object and the wave propagation velocity from GPR data

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3