A Fully-Integrated Analog Machine Learning Classifier for Breast Cancer Classification

Author:

T. Chandrasekaran Sanjeev,Hua Ruobing,Banerjee Imon,Sanyal Arindam

Abstract

We propose a fully integrated common-source amplifier based analog artificial neural network (ANN). The performance of the proposed ANN with a custom non-linear activation function is demonstrated on the breast cancer classification task. A hardware-software co-design methodology is adopted to ensure good matching between the software AI model and hardware prototype. A 65 nm prototype of the proposed ANN is fabricated and characterized. The prototype ANN achieves 97% classification accuracy when operating from a 1.1 V supply with an energy consumption of 160 fJ/classification. The prototype consumes 50 μ W power and occupies 0.003 mm 2 die area.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An ultra-low power adjustable current-mode analog integrated general purpose artificial neural network classifier;AEU - International Journal of Electronics and Communications;2024-11

2. A Memristor-Equivalent Analog Integrated Neural Network for Air Quality Classification;2024 13th International Conference on Modern Circuits and Systems Technologies (MOCAST);2024-06-26

3. An Analog Classifier for Liver Disorders based on Centroid Machine Learning Model;2024 13th International Conference on Modern Circuits and Systems Technologies (MOCAST);2024-06-26

4. A Robot Execution Failures Classification System Based on Analog IC Neural Networks;2024 19th Conference on Ph.D Research in Microelectronics and Electronics (PRIME);2024-06-09

5. An Analog Neural Network for Estimating Sea State or Wave Height from Inertial Sensor Data;2024 IEEE 6th International Conference on AI Circuits and Systems (AICAS);2024-04-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3