Power Transformers Health Index Enhancement Based on Convolutional Neural Network after Applying Imbalanced-Data Oversampling

Author:

Taha Ibrahim B. M.1ORCID

Affiliation:

1. Department of Electrical Engineering, College of Engineering, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia

Abstract

The transformer health index (HI) concept has been used as an important part of management resources and is implemented for the state assessment and ranking of Power transformers. The HI state is estimated based on many power transformer oil parameters. However, the main problem in the HI procedure as a diagnostic method is the presence of routine measurements and accurate test results. The power transformer HI prediction is carried out in this work using 1361 dataset samples collected from two different utilities. The proposed model is used to predict and diagnose the HI state of the power transformer by using a convolutional neural network (CNN) approach. The imbalance between the training dataset sample classes produces a good prediction of the class with a major number of samples while a low detection of the class has a minor number of samples. The oversampling approach is used to balance the training samples to enhance the prediction accuracy of the classification methods. The proposed CNN model predicts the HI of the power transformers after applying the oversampling approach to the training dataset samples. The results obtained with the proposed CNN model are compared with those obtained with the optimized machine learning (ML) classification methods with the superiority of the CNN results. Feature reductions are applied to minimize testing time, effort, and costs. Finally, the proposed CNN model is checked with uncertain noise in full and reduced features of up to ±25% with a good prediction diagnosis of the power transformer HI.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3