Preference-Aware Light Graph Convolution Network for Social Recommendation

Author:

Xu Haoyu1,Wu Guodong1,Zhai Enting1,Jin Xiu1ORCID,Tu Lijing2

Affiliation:

1. College of Information and Computer Science, Anhui Agricultural University, Hefei 230001, China

2. Anhui Provincial Key Laboratory of Smart Agricultural Technology and Equipment, Hefei 230036, China

Abstract

Social recommendation systems leverage the abundant social information of users existing in the current Internet to mitigate the problem of data sparsity, ultimately enhancing recommendation performance. However, most existing recommendation systems that introduce social information ignore the negative messages passed by high-order neighbor nodes and aggregate messages without filtering, which results in a decline in the performance of the recommendation system. Considering this problem, we propose a novel social recommendation model based on graph neural networks (GNNs) called the preference-aware light graph convolutional network (PLGCN), which contains a subgraph construction module using unsupervised learning to classify users according to their embeddings and then assign users with similar preferences to a subgraph to filter useless or even negative messages from users with different preferences to attain even better recommendation performance. We also designed a feature aggregation module to better combine user embeddings with social and interaction information. In addition, we employ a lightweight GNN framework to aggregate messages from neighbors, removing nonlinear activation and feature transformation operations to alleviate the overfitting problem. Finally, we carried out comprehensive experiments using two publicly available datasets, and the results indicate that PLGCN outperforms the current state-of-the-art (SOTA) method, especially in dealing with the problem of cold start. The proposed model has the potential for practical applications in online recommendation systems, such as e-commerce, social media, and content recommendation.

Funder

Anhui Province Science and Technology Major Special Projects

Anhui Provincial Natural Science Foundation Project

Open Fund Project of Anhui Provincial Key Laboratory of Intelligent Agricultural Technology and Equipment

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3