Low-Power FPGA Realization of Lightweight Active Noise Cancellation with CNN Noise Classification

Author:

Park Seunghyun1ORCID,Park Daejin1ORCID

Affiliation:

1. School of Electronic and Electrical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea

Abstract

Active noise cancellation (ANC) is the most important function in an audio device because it removes unwanted ambient noise. As many audio devices are increasingly equipped with digital signal processing (DSP) circuits, the need for low-power and high-performance processors has arisen because of hardware resource restrictions. Low-power design is essential because wireless audio devices have limited batteries. Noise cancellers process the noise in real time, but they have a short secondary path delay in conventional least mean square (LMS) algorithms, which makes implementing high-quality ANC difficult. To solve these problems, we propose a fixed-filter noise cancelling system with a convolutional neural network (CNN) classification algorithm to accommodate short secondary path delay and reduce the noise ratio. The signal-to-noise ratio (SNR) improved by 2.3 dB with CNN noise cancellation compared to the adaptive LMS algorithm. A frequency-domain noise classification and coefficient selection algorithm is introduced to cancel the noise for time-varying systems. Additionally, our proposed ANC architecture includes an even–odd buffer that efficiently computes the fast Fourier transform (FFT) and overlap-save (OLS) convolution. The simulation results demonstrate that the proposed even–odd buffer reduces processing time by 20.3% and dynamic power consumption by 53% compared to the single buffer.

Funder

Ministry of Education

Ministry of Science and ICT

Institute of Information and Communications Technology Planning and Evaluation

IC Design Education Center

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Efficient Noise Cancellation in Lung Signals Using Pipelined Adaptive LMS Algorithm;2024 International Conference on Smart Systems for Electrical, Electronics, Communication and Computer Engineering (ICSSEECC);2024-06-28

2. Electromagnetic Interference Cancellation in the Frequency Domain Based on the ASEI-VMD Method;Electronics;2023-09-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3