GUI Component Detection-Based Automated Software Crash Diagnosis

Author:

Nam Seong-Guk1,Seo Yeong-Seok1ORCID

Affiliation:

1. Department of Computer Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea

Abstract

This study presents an automated software crash-diagnosis technique using a state transition graph (STG) based on GUI-component detection. An STG is a graph representation of the state changes in an application that are caused by actions that are executed in the GUI, which avoids redundant test cases and generates bug-reproduction scenarios. The proposed technique configures the software application STG using computer vision and artificial intelligence technologies and performs automated GUI testing without human intervention. Four experiments were conducted to evaluate the performance of the proposed technique: a detection-performance analysis of the GUI-component detection model, code-coverage measurement, crash-detection-performance analysis, and crash-detection-performance analysis in a self-configured multi-crash environment. The GUI-component detection model obtained a macro F1-score of 0.843, even with a small training dataset for the deep-learning model in the detection-performance analysis. Furthermore, the proposed technique achieved better performance results than the baseline Monkey in terms of code coverage, crash detection, and multi-crash detection.

Funder

Yeungnam University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. GUI-Enabled Fusion of U-Net and ResNet-34 for Building Classification and Change Detection;2024 IEEE International Conference on Contemporary Computing and Communications (InC4);2024-03-15

2. GUI Component Detection Using YOLO and Faster-RCNN;2023 14th International Conference on Electrical and Electronics Engineering (ELECO);2023-11-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3