DVL Model Prediction Based on Fuzzy Multi-Output Least Squares Support Vector Machine in SINS/DVL

Author:

Zhao Bo12,Gao Wei1,Xia Xiuwei1

Affiliation:

1. Navigation Instrument Research Institude, Harbin Institude of Technology, Harbin 150001, China

2. Anshan Industrial Technology Research Institute of Harbin Institute of Technology, Anshan 114000, China

Abstract

For an underwater Strapdown Inertial Navigation System/Doppler velocity log (SINS/DVL) integrated navigation system, the short-term failure of DVL may lead to the loss of reliable external velocity information from DVL, which will cause the SINS errors to accumulate. To circumvent this problem, this paper proposes a velocity predictor based on fuzzy multi-output least squares support vector machine (FMLS-SVM) to predict DVL measurements when DVL malfunctions occur. Firstly, the single-output least squares support vector machine (LS-SVM) model is extended to the multi-output LS-SVM model (MLS-SVM), and the self-adaptive fuzzy membership is introduced to fuzzify the input samples to overcome the over-fitting problem caused by the excessive sensitivity to the outlier points. Secondly, the fuzzy membership function is designed from the idea of the K nearest neighbor (KNN) algorithm. Finally, considering the influence of vehicle maneuver on the prediction model of DVL, the dynamic attitude angles are extended to the input samples of the prediction model to improve the adaptability of the DVL prediction model under large maneuver conditions. The performance of the method is verified by lake experiments. The comparison results show that the velocity predictor based on FMLS-SVM can correctly provide the estimated DVL measurements, effectively prolong the fault tolerance time of DVL faults, and improve the accuracy and reliability of the SINS/DVL integrated navigation system.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Postdoctoral Foundation of Heilongjiang Province Government

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3