A Hybrid Forecast Model of EEMD-CNN-ILSTM for Crude Oil Futures Price

Author:

Wang Jingyang12ORCID,Zhang Tianhu1,Lu Tong1,Xue Zhihong1

Affiliation:

1. Hebei University of Science and Technology, Shijiazhuang 050018, China

2. Hebei Intelligent Internet of Things Technology Innovation Center, Shijiazhuang 050018, China

Abstract

Crude oil has dual attributes of finance and energy. Its price fluctuation significantly impacts global economic development and financial market stability. Therefore, it is necessary to predict crude oil futures prices. In this paper, a hybrid forecast model of EEMD-CNN-ILSTM for crude oil futures price is proposed, which is based on Ensemble Empirical Mode Decomposition (EEMD), Convolutional Neural Network (CNN), and Improved Long Short-Term Memory (ILSTM). ILSTM improves the output gate of Long Short-Term Memory (LSTM) and adds important hidden state information based on the original output. In addition, ILSTM adds the learning of cell state at the previous time in the forget gate and input gate, which makes the model learn more fully from historical data. EEMD decomposes time series data into a residual sequence and multiple Intrinsic Mode Functions (IMF). Then, the IMF components are reconstructed into three sub-sequences of high-frequency, middle-frequency, and low-frequency, which are convenient for CNN to extract the input data’s features effectively. The forecast accuracy of ILSTM is improved efficiently by learning historical data. This paper uses the daily crude oil futures data of the Shanghai Energy Exchange in China as the experimental data set. The EEMD-CNN-ILSTM is compared with seven prediction models: Support Vector Regression (SVR), Multi-Layer Perceptron (MLP), LSTM, ILSTM, CNN-LSTM, CNN-ILSTM, and EEMD-CNN-LSTM. The results of the experiment show the model is more effective and accurate.

Funder

Innovation Foundation of Hebei Intelligent Internet of Things Technology Innovation Center

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3