Design Methodology and Experimental Study of a Lower Extremity Soft Exosuit

Author:

He Long12,Xu Cheng1,Guan Xiaorong1ORCID

Affiliation:

1. School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

2. Zhiyuan Research Institute, Hangzhou 310013, China

Abstract

Flexibility and light weight have become the development trends in the field of exoskeleton research. With high movement flexibility, low movable inertia and excellent wearable comfort, such a type of system is gradually becoming an exclusive candidate for applications such as military defense, rehabilitation training and industrial production. In this paper, aiming at assisting the walking of human lower limbs, a soft exosuit is investigated and developed based on the considerations of fabric structure, sensing system, cable-driven module, and control strategy, etc. Evaluation experiments are also conducted to verify its effectiveness. A fabric optimization of the flexible suit is performed to realize the tight bond between human and machine. Through the configuration of sensor nodes, the motion intention perception system is constructed for the lower limb exosuit. A flexible actuation unit with a Bowden cable is designed to improve the efficiency of force transmission. In addition, a position control strategy based on division of the gait phase is applied to achieve active assistance during plantar flexion of the ankle joint. Finally, to verify the assistive effectiveness of the proposed lower extremity exosuit, experiments including a physiological metabolic test and a muscle activation test are conducted. The experiment results show that the exosuit proposed in this paper can effectively reduce the metabolic consumption and muscle output of the human body. The design and methodology proposed in this paper can be extended to similar application scenarios.

Funder

National Defense Bureau of Science and Technology Key Program of National Defense Basic Research

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3