Efficient Resource Allocation for Beam-Hopping-Based Multi-Satellite Communication Systems

Author:

Wang Yingjie12,Zeng Ming1,Fei Zesong1

Affiliation:

1. School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China

2. Beijing Institute of Technology Chongqing Innovation Center, Chongqing 401120, China

Abstract

With the rapid growth of data traffic, low earth orbit (LEO) satellite communication networks have gradually ushered in a new trend of development due to its advantages of low latency, wide coverage, and high capacity. However, as a result of the limited on-board resources and rapidly changing traffic demand, it is increasingly urgent to design an efficient resource-allocation scheme to satisfy the traffic demand. In this paper, we propose two resource allocation algorithms in the multi-satellite system based on beam-hopping technology. In the offline case, it is assumed that the channel gains in all time-slots are known in advance, and we propose a heuristic algorithm to allocate time and frequency resources, and a successive convex approximation (SCA) algorithm to allocate power resources. In the online case, it is assumed that only the instant channel gains information is known; therefore, we apply the dynamic programming (DP) algorithm to maximize the system throughput. The simulation results prove that the proposed resource-allocation algorithms based on beam-hopping technology have better performance than the traditional average allocation method, and the online algorithm has acceptable performance loss compared with the offline algorithm.

Funder

National Key R&D Program of China under grant

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3