Affiliation:
1. School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China
2. Beijing Institute of Technology Chongqing Innovation Center, Chongqing 401120, China
Abstract
With the rapid growth of data traffic, low earth orbit (LEO) satellite communication networks have gradually ushered in a new trend of development due to its advantages of low latency, wide coverage, and high capacity. However, as a result of the limited on-board resources and rapidly changing traffic demand, it is increasingly urgent to design an efficient resource-allocation scheme to satisfy the traffic demand. In this paper, we propose two resource allocation algorithms in the multi-satellite system based on beam-hopping technology. In the offline case, it is assumed that the channel gains in all time-slots are known in advance, and we propose a heuristic algorithm to allocate time and frequency resources, and a successive convex approximation (SCA) algorithm to allocate power resources. In the online case, it is assumed that only the instant channel gains information is known; therefore, we apply the dynamic programming (DP) algorithm to maximize the system throughput. The simulation results prove that the proposed resource-allocation algorithms based on beam-hopping technology have better performance than the traditional average allocation method, and the online algorithm has acceptable performance loss compared with the offline algorithm.
Funder
National Key R&D Program of China under grant
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献