Interference Avoidance through Periodic UAV Scheduling in RIS-Aided UAV Cluster Communications

Author:

Zhou Enzhi12,Liu Ziyue2,Lan Ping3,Xiao Wei3,Yang Wei2,Niu Xianhua14

Affiliation:

1. School of Computer and Software Engineering, Xihua University, Chengdu 610039, China

2. Intelligent Sensing and High-Speed Computing Laboratory, Xihua University, Chengdu 610039, China

3. School of Information Science and Technology, Tibet University, Lhasa 850013, China

4. National Key Laboratory of Science and Technology on Communications, University of Electronic Science and Technology of China, Chengdu 611731, China

Abstract

This article investigates the transmission of downlink control signals for multiple unmanned aerial vehicle (UAV) clusters in collaborative search and rescue operations in mountainous environments. In this scenario, a reconfigurable intelligent surface (RIS) mounted on the UAV is utilized to overcome obstacles between the ground base station (BS) and UAVs. By leveraging the fixed channel of the RIS to the BS, the line-of-sight (LoS) path characteristics of the air-to-air channel, and the position information of the UAV, the RIS forms a directional beam by adjusting the RIS coefficient, which points towards UAVs in the cluster. To ensure low delay in control signaling and UAV state transmission, we adopt semi-persistent scheduling (SPS), which allocates pre-specified periodic intervals to each UAV for the formation of corresponding RIS coefficients. The allocation of time slots is constrained by the transmission intervals required by different UAVs and the number of RISs available. We propose a time slot scheduling scheme for UAVs to reduce inter-cluster interference caused by RIS beams. The time slot allocation problem is formulated as a combinatorial optimization problem. To solve this problem, we first propose an intuitive greedy scheme called local interference minimization (LIM). Building upon the LIM scheme, we propose a rollout-based algorithm called rollout interference minimization (RIM). Through simulation, we compare the LIM and RIM schemes with the benchmark scheduling scheme. The results demonstrate that our proposed scheme significantly reduces interference between UAV clusters while satisfying the conditions of periodic transmission and RIS quantity constraints.

Funder

Science and Technology Major Project of the Tibetan Autonomous Region of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3