BFE-Net: Object Detection with Bidirectional Feature Enhancement

Author:

Zhang Rong1,Zhu Zhongjie1,Li Long1,Bai Yongqiang1,Shi Jiong1

Affiliation:

1. Ningbo Key Lab of DSP, Zhejiang Wanli University, Ningbo 315000, China

Abstract

In realistic scenarios, existing object detection models still face challenges in resisting interference and detecting small objects due to complex environmental factors such as light and noise. For this reason, a novel scheme termed BFE-Net based on bidirectional feature enhancement is proposed. Firstly, a new multi-scale feature extraction module is constructed, which uses a self-attention mechanism to simulate human visual perception. It is used to capture global information and long-range dependencies between pixels, thereby optimizing the extraction of multi-scale features from input images. Secondly, a feature enhancement and denoising module is designed, based on bidirectional information flow. In the top-down, the impact of noise on the feature map is weakened to further enhance the feature extraction. In the bottom-up, multi-scale features are fused to improve the accuracy of small object feature extraction. Lastly, a generalized intersection over union regression loss function is employed to optimize the movement direction of predicted bounding boxes, improving the efficiency and accuracy of object localization. Experimental results using the public dataset PASCAL VOC2007test show that our scheme achieves a mean average precision (mAP) of 85% for object detection, which is 2.3% to 8.6% higher than classical methods such as RetinaNet and YOLOv5. Particularly, the anti-interference capability and the performance in detecting small objects show a significant enhancement.

Funder

National Natural Science Foundation of China

Zhejiang Provincial Natural Science Foundation of China

Ningbo Municipal Major Project of Science and Technology Innovation 2025

Zhejiang Provincial Public Welfare Program

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3