Image Composition Method Based on a Spatial Position Analysis Network

Author:

Li Xiang12ORCID,Teng Guowei1,An Ping1,Yao Haiyan2

Affiliation:

1. School of Communication and Information Engineering, Shanghai University, Shanghai 200444, China

2. School of Electronic Information and Electrical Engineering, Anyang Institute of Technology, Anyang 455000, China

Abstract

Realistic image composition aims to composite new images by fusing a source object into a target image. It is a challenging problem due to the complex multi-task framework, including sensible object placement, appearance consistency, shadow generation, etc. Most existing researchers attempt to address one of the issues. Especially before compositing, there is no matching assignment between the source object and target image, which often leads to unreasonable results. To address the issues above, we consider image composition as an image generation problem and propose a deep adversarial learning network via spatial position analysis. We target the analysis network segment and classify the objects in target images. A spatial alignment network matches the segmented objects with the source objects, and predicts a sensible placement position, and an adversarial network generates a realistic composite image with the shadow and reflection of the source object. Furthermore, we use the classification information of target objects to filter out unreasonable image compositing. Moreover, we introduce a new test set to evaluate the network generalization for our multi-task image composition dataset. Extensive experimental results of the SHU (Shanghai University) dataset demonstrate that our deep spatial position analysis network remarkably enhances the compositing performance in realistic, shadow, and reflection generations.

Funder

National Natural Science Foundation of China

Science and Technology Commission of Shanghai Municipality

Anyang Science and Technology Program

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3