EEG-Based Functional Connectivity Analysis for Cognitive Impairment Classification

Author:

Echeverri-Ocampo Isabel1ORCID,Ardila Karen1,Molina-Mateo José2ORCID,Padilla-Buritica J. I.3,Carceller Héctor456,Barceló-Martinez Ernesto A.7,Llamur S. I.8,Iglesia-Vaya Maria de la5ORCID

Affiliation:

1. Departamento de Electrónica y Automatización, Universidad Autónoma de Manizales, Manizales 170002, Colombia

2. Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, 46022 Valencia, Spain

3. AMYSOD Lab–Parque i, CM&P Research Group, Instituto Tencnológico Metropolitano ITM, CL 73 No. 76 A 354, Medellin 050034, Colombia

4. Biomedical Imaging Unit FISABIO-CIPF, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana, 46012 Valencia, Spain

5. Neurobiology Unit, Program in Neurosciences and Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100 Burjassot, Spain

6. Spanish National Network for Research in Mental Health, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), 28008 Madrid, Spain

7. Departamento de Ciencias de la Salud, Instituto Colombiano de Neuropedagogía, Universidad de la Costa, Barranquilla 080002, Colombia

8. Facultad de Ciencias Exactas y Tecnologías, Universidad Nacional de Tucumán, Av. Independencia 1800, San Miguel de Tucumán T4000, Argentina

Abstract

Understanding how mild cognitive impairment affects global neural networks may explain changes in brain electrophysiology. Using graph theory and the visual oddball paradigm, we evaluated the functional connectivity of neuronal networks in brain lobes. The study involved 30 participants: 14 with mild cognitive impairment (MCI) and 16 healthy control (HC) participants. We conducted an examination using the visual oddball paradigm, focusing on electroencephalography signals with targeted stimuli. Our analysis employed functional connectivity utilizing the change point detection method. Additionally, we implemented training for linear discriminant analysis, K-nearest neighbor, and decision tree techniques to classify brain activity, distinguishing between subjects with mild cognitive impairment and those in the healthy control group. Our results demonstrate the efficacy of combining functional connectivity measurements derived from electroencephalography with machine learning for cognitive impairment classification. This research opens avenues for further exploration, including the potential for real-time detection of cognitive decline in complex real-world scenarios.

Funder

Universidad Autónoma de Manizales

Automatics Research Group, and the Neurolearning Research Group

Biomedical Imaging Unit FISABIO-CIPF

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3