Transmission Line Fault Detection and Classification Based on Improved YOLOv8s

Author:

Qiang Hao12ORCID,Tao Zixin1,Ye Bo1,Yang Ruxue1,Xu Weiyue1

Affiliation:

1. School of Mechanical Engineering and Rail Transit, Changzhou University, Changzhou 213164, China

2. Jiangsu Province Engineering Research Center of High-Level Energy and Power Equipment, Changzhou University, Changzhou 213164, China

Abstract

Transmission lines are an important component of the power grid, while complex natural conditions can cause fault and delayed maintenance, which makes it quite important to locate and collect the fault parts efficiently. The current unmanned aerial vehicle (UAV) inspection on transmission lines makes up for these problems to some extent. However, the complex background information contained in the images collected by power inspection and the existing deep learning methods are mostly highly sensitive to complex backgrounds, making the detection of multi-scale targets more difficult. Therefore, this article proposes an improved transmission line fault detection method based on YOLOv8s. The model not only detects defects in the insulators of power transmission lines but also adds the identification of birds’ nests, which makes the power inspection more comprehensive in detecting faults. This article uses Triplet Attention (TA) and an improved Bidirectional Feature Pyramid Network (BiFPN) to enhance the ability to extract discriminative features, enabling higher semantic information to be obtained after cross-layer fusion. Then, we introduce Wise-IoU (WIoU), a monotonic focus mechanism for cross-entropy, which enables the model to focus on difficult examples and improve the bounding box loss and classification loss. After deploying the improved method in the Win10 operating system and detecting insulator flashover, insulator broken, and nest faults, this article achieves a Precision of 92.1%, a Recall of 88.4%, and an mAP of 92.4%. Finally, we conclude that in complex background images, this method can not only detect insulator defects but also identify power tower birds’ nests.

Funder

Postgraduate Research & Practice Innovation Program of Jiangsu Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3