High Accuracy and Wide Range Recognition of Micro AR Markers with Dynamic Camera Parameter Control

Author:

Haraguchi Daisuke1ORCID,Miyahara Ryu1

Affiliation:

1. National Institute of Technology, Tokyo College, 1220-2, Kunugida-machi, Hachioji 193-0997, Tokyo, Japan

Abstract

This paper presents a novel dynamic camera parameter control method for the position and posture estimation of highly miniaturized AR markers (micro AR markers) using a low-cost general camera. The proposed method captures images from the camera at each cycle and detects markers from these images. Subsequently, it performs iterative calculations of the marker’s position and posture to converge them to a specified accuracy while dynamically updating the camera’s zoom, focus, and other parameter values based on the detected marker’s depth distances. For a 10 mm square micro AR marker, the proposed system demonstrated recognition accuracy better than ±1.0% for depth distance and 2.5∘ for posture angle, with a maximum recognition range of 1.0 m. In addition, the iterative calculation time was 0.7 s for the initial detection of the marker. These experimental results indicate that the proposed method and system can be applied to the precise robotic handling of small objects at a low cost.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference41 articles.

1. Visual camera re-localization from RGB and RGB-D images using DSAC;Brachmann;IEEE Trans. Pattern Anal. Mach. Intell.,2021

2. DeepLabCut: Markerless pose estimation of user-defined body parts with deep learning;Mathis;Nat. Neurosci.,2018

3. Ear density estimation from high resolution RGB imagery using deep learning technique;Madec;Agric. For. Meteorol.,2019

4. Panteleris, P., Oikonomidis, I., and Argyros, A. (2018, January 12–15). Using a Single RGB Frame for Real Time 3D Hand Pose Estimation in the Wild. Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Tahoe, NV, USA.

5. Ichnowski, J., Avigal, Y., Kerr, J., and Goldberg, K. (2022, January 17–23). Dex-NeRF: Using a Neural Radiance Field to Grasp Transparent Objects. Proceedings of the Machine Learning Research, Baltimore, MD, USA.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3