Task-Based Visual Attention for Continually Improving the Performance of Autonomous Game Agents

Author:

Ulu Eren12ORCID,Capin Tolga2,Çelikkale Bora3ORCID,Celikcan Ufuk1ORCID

Affiliation:

1. Department of Computer Engineering, Hacettepe University, 06800 Ankara, Türkiye

2. Department of Computer Engineering, TED University, 06420 Ankara, Türkiye

3. Department of Software Engineering, Cankaya University, 06790 Ankara, Türkiye

Abstract

Deep Reinforcement Learning (DRL) has been effectively performed in various complex environments, such as playing video games. In many game environments, DeepMind’s baseline Deep Q-Network (DQN) game agents performed at a level comparable to that of humans. However, these DRL models require many experience samples to learn and lack the adaptability to changes in the environment and handling complexity. In this study, we propose Attention-Augmented Deep Q-Network (AADQN) by incorporating a combined top-down and bottom-up attention mechanism into the DQN game agent to highlight task-relevant features of input. Our AADQN model uses a particle-filter -based top-down attention that dynamically teaches an agent how to play a game by focusing on the most task-related information. In the evaluation of our agent’s performance across eight games in the Atari 2600 domain, which vary in complexity, we demonstrate that our model surpasses the baseline DQN agent. Notably, our model can achieve greater flexibility and higher scores at a reduced number of time steps.Across eight game environments, AADQN achieved an average relative improvement of 134.93%. Pong and Breakout games both experienced improvements of 9.32% and 56.06%, respectively. Meanwhile, SpaceInvaders and Seaquest, which are more intricate games, demonstrated even higher percentage improvements, with 130.84% and 149.95%, respectively. This study reveals that AADQN is productive for complex environments and produces slightly better results in elementary contexts.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference54 articles.

1. The arcade learning environment: An evaluation platform for general agents;Bellemare;J. Artif. Intell. Res.,2013

2. Human-level control through deep reinforcement learning;Mnih;Nature,2015

3. Sutton, R.S., and Barto, A.G. (2018). Reinforcement Learning: An Introduction, MIT Press.

4. Q-learning;Watkins;Mach. Learn.,1992

5. Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., and Riedmiller, M. (2013). Playing atari with deep reinforcement learning. arXiv.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3