Machine Learning with Adaptive Time Stepping for Dynamic Traffic Load Prediction in 6G Satellite Networks

Author:

Zhang Yangan1,Zhang Xiaoyu1,Yu Peng2ORCID,Yuan Xueguang1ORCID

Affiliation:

1. State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China

2. State Key Lab Networking & Switching Technol, Beijing University of Posts and Telecommunications, Beijing 100876, China

Abstract

The rapid development of sixth-generation (6G) mobile broadband networks and Internet of Things (IoT) applications has led to significant increases in data transmission and processing, resulting in severe traffic congestion. To better allocate network resources, predicting network traffic has become crucial. However, satellite networks face global imbalances in IoT traffic demand, with substantial variations in satellite density and load distribution within the same constellation. These disparities render traditional traffic prediction algorithms inadequate for dynamically changing satellite network topologies. This paper thoroughly examines the impact of adaptive time stepping on the prediction of dynamic traffic load. Particularly, we propose a high-speed traffic prediction method that employs machine learning and recurrent neural networks over the 6G Space Air Ground Integration Network (SAGIN) structure. In our proposed method, we first investigate a variable step size-normalized least mean square (VSS-NLMS) adaptive prediction method for transforming time series prediction datasets. Then, we propose an adaptive time stepping-Gated Recurrent Unit (ATS-GRU) algorithm for real-time network traffic prediction. Finally, we compare the prediction accuracy of the ATS-GRU algorithm with that of the fixed time stepping-Gated Recurrent Unit (FTS-GRU) algorithm and compared the prediction results of three different step sizes (FSS, VSS, and ATS) based on normalized least mean square (NLMS). Numerical results demonstrate that our proposed scheme can automatically choose a suitable time stepping to track and predict the traffic load curve with acceptable accuracy and reasonable computational complexity, as its time stepping dynamically adjusts with the traffic.

Funder

National Key R&D Plan

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3