Tikhonov-Tuned Sliding Neural Network Decoupling Control for an Inverted Pendulum

Author:

Mon Yi-Jen1ORCID

Affiliation:

1. Department of Electronic Engineering, Ming-Chuan University, Guei-Shan District, Taoyuan City 333, Taiwan

Abstract

This paper introduces the concept of intelligent control using Tikhonov regularization for nonlinear coupled systems. This research is driven by the increasing demand for advanced control techniques and aims to explore the impact of Tikhonov regularization on these systems. The primary objective is to determine the optimal regularization term and its integration with other control methods to enhance intelligent control for nonlinear coupled systems. Tikhonov regularization is a technique employed to adjust neural network weights and prevent overfitting. Additionally, the incorporation of ReLU activation function in the neural network simplifies thearchitecture, avoiding issues like gradient explosion, and optimizes controller performance. Furthermore, sliding surfaces are designed to improve control system stability and robustness. The proposed Tikhonov-tuned sliding neural network (TSN) controller ensures both stability and superior system performance. The methodology emphasizes the importance of determining optimal neural network weights and regularization terms to prevent overfitting, facilitating accurate predictions in inverted pendulum control system applications. To assess the functionality and stability of TSN, this paper employs simulations and experimental implementations to control both the rotary inverted pendulum and the arm-driven inverted pendulum. The results indicate that the proposed TSN methodologies are effective and feasible.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference31 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3