Affiliation:
1. School of Electronics and Information Engineering, Southwest University, Chongqing 400715, China
Abstract
Along with the continuous aging of the population, various diseases have brought a great threat to human health and a large economic burden. The development of advanced medical devices has gained global attention for disease treatment. Electrical stimulation refers to stimulation and treatment of cells by high output voltage, which is an important rehabilitation and therapeutic strategy in medical treatment. Triboelectric nanogenerators (TENGs), which are lightweight and feature high-voltage output and flexible structure, have drawn great attention in the field of disease treatment for health care. The conversion of the body’s mechanical energy into electrical pulses to stimulate cells for health treatment through TENG has promising applications. Using uniquely designed TENGs to convert human mechanical energy into electrical impulses to stimulate cells is considered a promising health treatment. Here, we review the recent progress of TENG-based electrical stimulation for disease treatments, focusing on the structure, materials, and performances of the TENGs used in diverse facets of healthcare. More importantly, we systematically discuss the application of TENG-based electrical stimulation in wound healing, osteoblast proliferation and differentiation, muscle stimulation, nerve stimulation, and pacemakers. Finally, several developmental challenges of and prospective solutions for TENG-based electrical stimulation are discussed and summarized in light of recent advances.
Funder
Young Elite Scientists Sponsorship Program by CAST
Fundamental Research Funds for the Central Universities
Science and Technology Research Program of Chongqing Municipal Education Commission
General Program of Chongqing Natural Science Foundation
Visiting Scholar Foundation of Key Laboratory of Optoelectronic Technology & Systems (Chongqing University), Ministry of Education
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献