Affiliation:
1. School of Information Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
Abstract
In practice, various factors such as friction, unmodeled dynamics and uncertain external disturbances often affect overhead cranes. The existing crane control methods often neglect these factors or address these factors by robust techniques. Moreover, most of them do not take input saturation into account and require full-state feedback. In this paper, taking the practical issues of uncertain disturbances, input saturation and output feedback into account, we propose an input-saturated output feedback control strategy for the underactuated two-dimensional (2-D) overhead crane systems with uncertain disturbances. Specifically, we first design a disturbance observer that can accurately estimate the external disturbance. Then, the virtual horizontal location signal is introduced and the new energy storage function is constructed. A novel composite control method for overhead crane systems is proposed based on the developed disturbance observer and the new energy storage function. The stability and convergence analysis are given through Lyapunov techniques and LaSalle’s invariance theorem. In order to verify the performance of the proposed controller, we perform a series of simulation tests and compare the proposed method with some existing control methods.
Funder
Natural Science Foundation of Zhejiang Province
China National University Student Innovation and Entrepreneurship Development Program
Fundamental Research Funds of Zhejiang Sci-Tech University
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Fixed-time stabilization control of underactuated bridge crane system;2024 36th Chinese Control and Decision Conference (CCDC);2024-05-25