Low-Profile Meander Line Multiband Antenna for Wireless Body Area Network (WBAN) Applications with SAR Analysis

Author:

Islam Tania1,Roy Sayan1ORCID

Affiliation:

1. Department of Electrical Engineering and Computer Science, South Dakota Mines, Rapid City, SD 57701, USA

Abstract

In this work, we propose a novel multiband meander line antenna that can operate at three different frequency bands and offer suitable performance for wireless body area network (WBAN) applications. The net geometry of the antenna is 36 × 30 × 1.524 mm3. The proposed low-profile antenna is analytically modeled and designed in full wave ANSYS HFSS using Rogers TMM4 as the substrate, followed by in-lab prototyping. The designed antenna resonates at 4.5 GHz, 5 GHz, and 5.8 GHz and maintains positive gain, efficiency, and acceptable specific absorption rates at each resonant band. The effectiveness of the antenna for WBAN applications is demonstrated using an in-lab manufactured phantom. The fabrication process of the phantom is described, and dielectric characterization of the phantom mimicking different human tissue layers is presented. Considering results with and without human body phantoms available in the full wave ANSYS HFSS tool, a comparative analysis between simulated and measured antenna parameters concludes this work. Both the simulated and measured results show good agreement.

Funder

National Aeronautics and Space Administration

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modeling of a Hexagonal Microstrip Patch Antenna for Breast Cancer Detection;Journal of Engineering and Science in Medical Diagnostics and Therapy;2023-12-18

2. Design of Multiband, Reconfigurable Coplanar Meander Antenna for WLAN Applications;JOURNAL OF HIGH-FREQUENCY COMMUNICATION TECHNOLOGIES;2023-11-14

3. High Gain Improved Planar Yagi Uda Antenna for 2.4 GHz Applications and Its Influence on Human Tissues;Applied Sciences;2023-05-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3