Night Vision Anti-Halation Algorithm Based on Different-Source Image Fusion Combining Visual Saliency with YUV-FNSCT

Author:

Guo Quanmin1,Yang Fan1,Wang Hanlei1

Affiliation:

1. School of Electronic and Information Engineering, Xi’an Technological University, Xi’an 710021, China

Abstract

In order to address driver’s dazzle caused by the abuse of high beams when vehicles meet at night, a night vision anti-halation algorithm based on image fusion combining visual saliency with YUV-FNSCT is proposed. Improved Frequency-turned (FT) visual saliency detection is proposed to quickly lock on the objects of interest, such as vehicles and pedestrians, so as to improve the salient features of fusion images. The high- and low-frequency sub-bands of infrared saliency images and visible luminance components can quickly be obtained using fast non-subsampled contourlet transform (FNSCT), which has the characteristics of multi-direction, multi-scale, and shift-invariance. According to the halation degree in the visible image, the nonlinear adaptive fusion strategy of low-frequency weight reasonably eliminates halation while retaining useful information from the original image to the maximum extent. The statistical matching feature fusion strategy distinguishes the common and unique edge information from the high-frequency sub-bands by mutual matching so as to obtain more effective details of the original images such as the edges and contours. Only the luminance Y decomposed by YUV transform is involved in image fusion, which not only avoids color shift of the fusion image but also reduces the amount of computation. Considering the night driving environment and the degree of halation, the visible images and infrared images were collected for anti-halation fusion in six typical halation scenes on three types of roads covering most night driving conditions. The fused images obtained by the proposed algorithm demonstrate complete halation elimination, rich color details, and obvious salient features and have the best comprehensive index in each halation scene. The experimental results and analysis show that the proposed algorithm has advantages in halation elimination and visual saliency and has good universality for different night vision halation scenes, which help drivers to observe the road ahead and improve the safety of night driving. It also has certain applicability to rainy, foggy, smoggy, and other complex weather.

Funder

National Natural Science Foundation of China

Key Research and Development Project of Shaanxi Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference29 articles.

1. Case Study of road rage incidents resulting from the illegal use of high beams;Wang;Transp. Res. Interdiscip. Perspect.,2020

2. Preparation of high performance thin-film polarizers;Zhu;Chin. Opt. Lett.,2010

3. Super-efficient enhancement algorithm for infrared night vision imaging system;Ashiba;Multimed. Tools Appl.,2020

4. Defogging technology based on dual-channel sensor information fusion of near-infrared and visible light;Yuan;J. Sens.,2020

5. Remote sensing image fusion method based on discrete wavelet and multiscale morphological transform in the IHS color space;Liu;J. Appl. Remote Sens.,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3