Self-Supervised Facial Motion Representation Learning via Contrastive Subclips

Author:

Sun Zheng1ORCID,Torrie Shad A.1ORCID,Sumsion Andrew W.1ORCID,Lee Dah-Jye1ORCID

Affiliation:

1. Department of Electrical and Computer Engineering, Brigham Young University, Provo, UT 84602, USA

Abstract

Facial motion representation learning has become an exciting research topic, since biometric technologies are becoming more common in our daily lives. One of its applications is identity verification. After recording a dynamic facial motion video for enrollment, the user needs to show a matched facial appearance and make a facial motion the same as the enrollment for authentication. Some recent research papers have discussed the benefits of this new biometric technology and reported promising results for both static and dynamic facial motion verification tasks. Our work extends the existing approaches and introduces compound facial actions, which contain more than one dominant facial action in one utterance. We propose a new self-supervised pretraining method called contrastive subclips that improves the model performance with these more complex and secure facial motions. The experimental results show that the contrastive subclips method improves upon the baseline approaches, and the model performance for test data can reach 89.7% average precision.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3