Knowledge-Based Visual Question Answering Using Multi-Modal Semantic Graph

Author:

Jiang Lei1ORCID,Meng Zuqiang1

Affiliation:

1. School of Computer, Electronics and Information, Guangxi University, Nanning 530000, China

Abstract

The field of visual question answering (VQA) has seen a growing trend of integrating external knowledge sources to improve performance. However, owing to the potential incompleteness of external knowledge sources and the inherent mismatch between different forms of data, current knowledge-based visual question answering (KBVQA) techniques are still confronted with the challenge of effectively integrating and utilizing multiple heterogeneous data. To address this issue, a novel approach centered on a multi-modal semantic graph (MSG) is proposed. The MSG serves as a mechanism for effectively unifying the representation of heterogeneous data and diverse types of knowledge. Additionally, a multi-modal semantic graph knowledge reasoning model (MSG-KRM) is introduced to perform reasoning and deep fusion of image–text information and external knowledge sources. The development of the semantic graph involves extracting keywords from the image object detection information, question text, and external knowledge texts, which are then represented as symbol nodes. Three types of semantic graphs are then constructed based on the knowledge graph, including vision, question, and the external knowledge text, with non-symbol nodes added to connect these three independent graphs and marked with respective node and edge types. During the inference stage, the multi-modal semantic graph and image–text information are embedded into the feature semantic graph through three embedding methods, and a type-aware graph attention module is employed for deep reasoning. The final answer prediction is a blend of the output from the pre-trained model, graph pooling results, and the characteristics of non-symbolic nodes. The experimental results on the OK-VQA dataset show that the MSG-KRM model is superior to existing methods in terms of overall accuracy score, achieving a score of 43.58, and with improved accuracy for most subclass questions, proving the effectiveness of the proposed method.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3