HIT-GCN: Spatial-Temporal Graph Convolutional Network Embedded with Heterogeneous Information of Road Network for Traffic Forecasting

Author:

Xiong Haitao1,Shen Guojiang1ORCID,Lan Xiang1,Yuan Haopeng1,Kong Xiangjie1ORCID

Affiliation:

1. College of Computer Science & Technology, Zhejiang University of Technology, Hangzhou 310023, China

Abstract

In road networks, attribute information carried by road segment nodes, such as weather and points of interest (POI), exhibit strong heterogeneity and often involve one-to-many or many-to-one relationships. However, research on such heterogeneity in traffic prediction is relatively limited. Our research examines how varying the network propagation pattern based on the degree of node-to-node heterogeneity of information affects the model prediction performance. Specifically, at the node level, we use knowledge embedding to generate knowledge vectors that quantify the heterogeneity among the attribute information of a node. At the road network level, we calculate a homogeneity adjacency matrix that captures both the topological structure of the road network and the similarity of node heterogeneity. This adjacency matrix assigns different weights to neighbors based on their homogeneity, guiding the propagation of graph convolutional networks (GCN). Finally, we separate the representation of propagation into self-representation and neighbor representation to extract multi-attribute information, including self, homogeneity, and heterogeneity. Experiments on real datasets demonstrate that the incorporation of our homogeneity adjacency matrix leads to a significant improvement in the accuracy of short-term and long-term prediction compared with previous work on homogeneous and single-dimensional information. Furthermore, our approach maintains its performance advantage over baseline models under different embedding dimensions and parameter settings.

Funder

“Pioneer” and “Leading Goose” R&D Program of Zhejiang

Zhejiang Provincial Natural Science Foundation

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3