Nonlinear Simulation and Performance Characterisation of an Adaptive Model Predictive Control Method for Booster Separation and Re-Entry

Author:

Chai Joseph1,Kayacan Erkan2ORCID

Affiliation:

1. School of Mechanical and Mining Engineering, University of Queensland, Brisbane 4072, Australia

2. School of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, OK 73019, USA

Abstract

This paper evaluates the L1 adaptive model predictive control (AMPC-L1) method in terms of its control performance and computational load. The control performance is assessed on the basis of the nonlinear simulation of a fly-back booster conducting stage separation and re-entry, and compared to baseline nonadaptive MPC and as a pole placement controller in both longitudinal and lateral control tasks. Simulation results show that AMPC-L1 exhibits superior control performance under nominal conditions, and aerodynamic and guidance law uncertainties. The computational load of AMPC-L1 is also evaluated on an embedded platform to demonstrate that AMPC-L1 preserves the efficiency properties of AMPC while improving its performance.

Funder

Australian Government Research Training Program

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3