SRAM Compilation and Placement Co-Optimization for Memory Subsystems

Author:

Liu Biwei1

Affiliation:

1. College of Computer Science, National University of Defense Technology, Changsha 410073, China

Abstract

Co-optimization for memory bank compilation and placement was suggested as a way to improve performance and power and reduce the size of a memory subsystem. First, a multi-configuration SRAM compiler was realized that could generate memory banks with different PPA by splitting or merging, upsizing or downsizing, threshold swapping, and aspect ratio deformation. Then, a timing margin estimation method was proposed for the memory bank based on placed positions. Through an exhaustive enumeration of various configuration parameters under the constraint of timing margins, the best SRAM memory compilation configuration was found. This method could be integrated into the existing physical design flow. The experimental results showed that this method achieved up to an 11.1% power reduction and a 7.6% critical path delay reduction compared with the traditional design method.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3