Impact of the High Penetration of Renewable Energy Sources on the Frequency Stability of the Saudi Grid

Author:

Alqahtani Saad12ORCID,Shaher Abdullah13,Garada Ali1,Cipcigan Liana1

Affiliation:

1. School of Engineering, Cardiff University, Cardiff CF24 3AA, UK

2. Electrical Engineering Department, Faculty of Engineering, King Khalid University, Abha 61411, Saudi Arabia

3. Electrical Engineering Department, Faculty of Engineering, Najran University, Najran 66241, Saudi Arabia

Abstract

The high penetration of inverter-fed renewable energy sources (RESs) in modern energy systems has led to a reduction in the system’s inertial response. This reduction in the rotational inertial response is associated with synchronous generation and might result in a deteriorated frequency response following a power disturbance. This paper investigates the frequency stability of the Kingdom of Saudi Arabia’s (KSA) grid. It includes a description of the changing energy landscape of the KSA’s electricity grid and an investigation of the impact of high penetration levels of inverter-fed RESs on the dynamic behavior of the KSA grid. The impact of RESs has been studied through a simulation of case studies of the future KSA power system using the MATLAB/Simulink simulation software. The frequency stability of the KSA’s power system has been evaluated with various RES levels under peak and base load conditions. The simulation results show that the high penetration levels of RESs dramatically affect the system’s frequency response, especially under off-peak conditions. In addition, the significance of battery energy storage systems (BESSs) for compensating the reduction in the system inertial response has been addressed. The results show the effectiveness of aggregated BESSs for enhancing the system frequency control of the KSA grid.

Funder

Cardiff University Institutional OA Fund

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3