Research on Posture Sensing and Error Elimination for Soft Manipulator Using FBG Sensors

Author:

Li Wenyu12,He Yanlin12,Geng Peng12,Yang Yi12

Affiliation:

1. Beijing Laboratory of Optical Fiber Sensing and System, Beijing Information Science & Technology University, Beijing 100192, China

2. Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science & Technology University, Beijing 100016, China

Abstract

Fiber-optic sensors are highly promising within soft robot sensing applications, but sensing methods based on geometry-based reconstruction limit the sensing capability and range. In this study, a fiber-optic sensor with a different deployment strategy for indirect sensing to monitor the outside posture of a soft manipulator is presented. The internal support structure’s curvature was measured using the FBG sensor, and its mapping to the external pose was then modelled using a modified LSTM network. The error was assumed to follow the Gaussian distribution in the LSTM neural network and was rectified by maximum likelihood estimation to address the issue of noise generated during the deformation transfer and curvature sensing of the soft structure. For the soft manipulator, the network model’s sensing performance was demonstrated. The proposed method’s average absolute error for posture sensing was 63.3% lower than the error before optimization, and the root mean square error was 56.9% lower than the error before optimization. The comparison results between the experiment and the simulation demonstrate the viability of the indirect measurement of the soft structure posture using FBG sensors based on the data-driven method, as well as the significant impact of the error optimization method based on the Gaussian distribution assumption.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3