Data Collection Mechanism for UAV-Assisted Cellular Network Based on PPO

Author:

Chen Tuo1,Dong Feihong2ORCID,Ye Hu2,Wang Yun3ORCID,Wu Bin4

Affiliation:

1. Beijing Institute of Satellite Information Engineering, Beijing 100000, China

2. System Engineering Institute, Academy of Military Sciences PLA, Beijing 100000, China

3. College of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, China

4. The School of Computer Science and Technology, Tianjin University, Tianjin 300072, China

Abstract

Unmanned aerial vehicles (UAVs) are increasingly gaining in application value in many fields because of their low cost, small size, high mobility and other advantages. In the scenario of traditional cellular networks, UAVs can be used as a kind of aerial mobile base station to collect information of edge users in time. Therefore, UAVs provide a promising communication tool for edge computing. However, due to the limited battery capacity, these may not be able to completely collect all the information. The path planning can ensure that the UAV collects as much data as possible under the limited flight distance, so it is very important to study the path planning of the UAV. In addition, due to the particularity of air-to-ground communication, the flying altitude of the UAV can have a crucial impact on the channel quality between the UAV and the user. As a mature technology, deep reinforcement learning (DRL) is an important algorithm in the field of machine learning which can be deployed in unknown environments. Deep reinforcement learning is applied to the data collection of UAV-assisted cellular networks, so that UAVs can find the best path planning and height joint optimization scheme, which ensures that UAVs can collect more information under the condition of limited energy consumption, save human and material resources as much as possible, and finally achieve higher application value. In this work, we transform the UAV path planning problem into an Markov decision process (MDP) problem. By applying the proximal policy optimization (PPO) algorithm, our proposed algorithm realizes the adaptive path planning of UAV. Simulations are conducted to verify the performance of the proposed scheme compared to the conventional scheme.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3