Precision Modeling: Application of Metaheuristics on Current–Voltage Curves of Superconducting Films

Author:

Naqvi Syed,Akram TallhaORCID,Haider Sajjad,Kamran Muhammad,Shahzad Aamir,Khan Wilayat,Iqbal Tassawar,Umer Hafiz

Abstract

Contemplating the importance of studying current–voltage curves in superconductivity, it has been recently and rightly argued that their approximation, rather than incessant measurements, seems to be a more viable option. This especially becomes bona fide when the latter needs to be recorded for a wide range of critical parameters including temperature and magnetic field, thereby becoming a tedious monotonous procedure. Artificial neural networks have been recently put forth as one methodology for approximating these so-called electrical measurements for various geometries of antidots on a superconducting thin film. In this work, we demonstrate that the prediction accuracy, in terms of mean-squared error, achieved by artificial neural networks is rather constrained, and, due to their immense credence on randomly generated networks’ coefficients, they may result in vastly varying prediction accuracies for different geometries, experimental conditions, and their own tunable parameters. This inconsistency in prediction accuracies is resolved by controlling the uncertainty in networks’ initialization and coefficients’ generation by means of a novel entropy based genetic algorithm. The proposed method helps in achieving a substantial improvement and consistency in the prediction accuracy of current–voltage curves in comparison to existing works, and is amenable to various geometries of antidots, including rectangular, square, honeycomb, and kagome, on a superconducting thin film.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3