Differential Privacy-Based Location Privacy Protection for Edge Computing Networks

Author:

Zhang Guowei12ORCID,Du Jiayuan1ORCID,Yuan Xiaowei1,Zhang Kewei1

Affiliation:

1. School of Cyber Science and Engineering, Qufu Normal University, Qufu 273100, China

2. The Key Laboratory of Computing Power Network and Information Security, Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250300, China

Abstract

Mobile Edge Computing (MEC) has been widely applied in various Internet of Things (IoT) scenarios due to its advantages of low latency and low energy consumption. However, the offloading of tasks generated by terminal devices to edge servers inevitably raises privacy leakage concerns. Given the limited resources in MEC networks, this paper proposes a task scheduling strategy, named DQN-DP, to minimize location privacy leakage under the constraint of offloading costs. The strategy is based on a differential privacy location obfuscation probability density function. Theoretical analysis demonstrates that the probability density function employed in this study is valid and satisfies ϵ-differential privacy in terms of security. Numerical results indicate that, compared to existing baseline approaches, the proposed DQN-DP algorithm effectively balances privacy leakage and offloading cost. Specifically, DQN-DP reduces privacy leakage by approximately 20% relative to baseline approaches.

Funder

Natural Science Foundation of Shandong Province

Open Project of Shandong Provincial Key Laboratory of Computer Networks

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3