Prediction of Remaining Useful Life of Battery Using Partial Discharge Data

Author:

Hussain Qaiser1,Yun Sunguk1ORCID,Jeong Jaekyun1,Lee Mangyu1,Kim Jungeun2

Affiliation:

1. Department of Computer Engineering, Kongju National University, Cheonan 31080, Republic of Korea

2. Department of Computer Engineering, Inha University, Incheon 22212, Republic of Korea

Abstract

Lithium-ion batteries are cornerstones of renewable technologies, which is why they are used in many applications, specifically in electric vehicles and portable electronics. The accurate estimation of the remaining useful life (RUL) of a battery is pertinent for durability, efficient operation, and stability. In this study, we have proposed an approach to predict the RUL of a battery using partial discharge data from the battery cycles. Unlike other studies that use complete cycle data and face reproducibility issues, our research utilizes only partial data, making it both practical and reproducible. To analyze this partial data, we applied various deep learning methods and compared multiple models, among which ConvLSTM showed the best performance, with an RMSE of 0.0824. By comparing the performance of ConvLSTM at various ratios and ranges, we have confirmed that using partial data can achieve a performance equal to or better than that obtained when using complete cycle data.

Funder

Technology Development Program of MSS

Regional Innovation Strategy

National Research Foundation of Korea (NRF) funded by the Ministry of Education

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3