Efficient Headline Generation with Hybrid Attention for Long Texts

Author:

Wan Wenjin1,Zhang Cong1,Huang Lan1ORCID

Affiliation:

1. School of Computer Science, Yangtze University, Jingzhou 434000, China

Abstract

Headline generation aims to condense key information from an article or a document into a concise one-sentence summary. The Transformer structure is in general effective for such tasks, yet it suffers from a dramatic increase in training time and GPU consumption as the input text length grows. To address this problem, a hybrid attention mechanism is proposed. Both local and global semantic information among words are modeled in a way that significantly improves training efficiency, especially for long text. Effectiveness is not sacrificed; in fact, fluency and semantic coherence of the generated headlines are enhanced. Experimental results on an open benchmark dataset show that, compared to the baseline model’s best performance, the proposed model obtains a 14.7%, 16.7%, 14.4% and 9.1% increase in the F1 values of the ROUGE-1, the ROUGE-2, the ROUGE-L and the ROUGE-WE metrics, respectively. The semantic coherence of the generated text is also improved, as shown by a 2.8% improvement in the BERTScore’s F1 value. These results show that the effectiveness of the proposed headline generation model with the hybrid attention mechanism is also improved. The hybrid attention mechanism could provide references for relevant text generation tasks.

Funder

2021 Higher Education Research Program of the Educational Commission of Hubei Province of P. R. China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3