Affiliation:
1. School of Electrical and Control Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
Abstract
To address the issue of reduced positioning and anti-swing accuracy of bridge cranes under disturbed conditions within a prescribed time, a positioning and anti-swing control algorithm, based on a prescribed-time disturbance observer, is proposed. Unlike existing research, the novel disturbance observer is designed to accurately estimate disturbances within a prescribed time, ensuring precise disturbance compensation. This allows for high-precision positioning and anti-swing of bridge cranes under disturbed conditions within a prescribed time. Firstly, a prescribed-time disturbance observer is designed to ensure accurate disturbance estimation. Secondly, a new prescribed-time sliding mode surface and a prescribed-time reaching law with a recursive structure are designed to ensure that the system state converges accurately within the prescribed time. Finally, theoretical analysis and simulation verify that the proposed control algorithm achieves the control objective of high-precision positioning and anti-swing of bridge cranes under disturbed conditions within a prescribed time.