Design of a PID Controller for Microbial Fuel Cells Using Improved Particle Swarm Optimization

Author:

Wang Chenlong1,Zhu Baolong1,Ma Fengying1ORCID,Sun Jiahao1

Affiliation:

1. School of Information and Automation Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China

Abstract

The microbial fuel cell (MFC) is a renewable energy technology that utilizes the oxidative decomposition processes of anaerobic microorganisms to convert the chemical energy in organic matter, such as wastewater, sediments, or other biomass, into electrical power. This technology is not only applicable to wastewater treatment but can also be used for resource recovery from various organic wastes. The MFC usually requires an external controller that allows it to operate under controlled conditions to obtain a stable output voltage. Therefore, the application of a PID controller to the MFC is proposed in this paper. The design phase for this controller involves the identification of three parameters. Although the particle swarm optimization (PSO) algorithm is an advanced optimization algorithm based on swarm intelligence, it suffers from issues such as unreasonable population initialization and slow convergence speed. Therefore, this paper proposes an improved particle swarm algorithm based on the Golden Sine Strategy (GSCPSO). Using Circle chaotic mapping to make the distribution of the initial population more uniform, and then using the Golden Sine Strategy to improve the position update formula, not only improves the convergence speed of the population but also enhances convergence precision. The GSCPSO algorithm is applied to execute the described design process. The results of the simulation show that the designed control method exhibits smaller steady-state error, overshoot, and chattering compared with sliding-mode control (SMC), backstepping control, fuzzy SMC (FSMC), PSO-PID, and CPSO-PID.

Funder

National Natural Science Foundation of China

Pilot projects for the integration of science, education, and industry

National Laboratory of Space Intelligent Control

Research Foundation for Advanced Talents of Qilu University of Technology

Youth Innovation Science and Technology Support Plan of Colleges in Shandong Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3