MFAD-RTDETR: A Multi-Frequency Aggregate Diffusion Feature Flow Composite Model for Printed Circuit Board Defect Detection

Author:

Xie Zhihua12ORCID,Zou Xiaowei12

Affiliation:

1. Key Lab of Optic-Electronic and Communication, Jiangxi Science and Technology Normal University, Nanchang 330038, China

2. Nanchang Key Laboratory of Failure Perception & Green Energy Materials Intelligent Manufacturing, Nanchang 330038, China

Abstract

To address the challenges of excessive model parameters and low detection accuracy in printed circuit board (PCB) defect detection, this paper proposes a novel PCB defect detection model based on the improved RTDETR (Real-Time Detection, Embedding and Tracking) method, named MFAD-RTDETR. Specifically, the proposed model introduces the designed Detail Feature Retainer (DFR) into the original RTDETR backbone to capture and retain local details. Subsequently, based on the Mamba architecture, the Visual State Space (VSS) module is integrated to enhance global attention while reducing the original quadratic complexity to a linear level. Furthermore, by exploiting the deformable attention mechanism, which dynamically adjusts reference points, the model achieves precise localization of target defects and improves the accuracy of the transformer in complex visual tasks. Meanwhile, a receptive field synthesis mechanism is incorporated to enrich multi-scale semantic information and reduce parameter complexity. In addition, the scheme proposes a novel Multi-frequency Aggregation and Diffusion feature composite paradigm (MFAD-feature composite paradigm), which consists of the Aggregation Diffusion Fusion (ADF) module and the Refiner Feature Composition (RFC) module. It aims to strengthen features with fine-grained awareness while preserving a certain level of global attention. Finally, the Wise IoU (WIoU) dynamic nonmonotonic focusing mechanism is used to reduce competition among high-quality anchor boxes and mitigate the effects of the harmful gradients from low-quality examples, thereby concentrating on anchor boxes of average quality to promote the overall performance of the detector. Extensive experiments are conducted on the PCB defect dataset released by Peking University to validate the effectiveness of the proposed model. The experimental results show that our approach achieves the 97.0% and 51.0% performance in mean Average Precision (mAP)@0.5 and mAP@0.5:0.95, respectively, which significantly outperforms the original RTDETR. Moreover, the model reduces the number of parameters by approximately 18.2% compared to the original RTDETR.

Funder

National Nature Science Foundation of China

Natural Science Foundation of Jiangxi Province of China

Jiangxi Province Graduate Innovation Special Fund Project

Publisher

MDPI AG

Reference37 articles.

1. Methods of image edge detection: A review;Dharampal;J. Electr. Electron. Syst.,2015

2. The fourier transform;Bracewell;Sci. Am.,1989

3. The generalized Gabor transform;Yao;IEEE Trans. Image Process.,1995

4. Zhang, D., and Zhang, D. (2019). Wavelet transform. Fundamentals of Image Data Mining: Analysis, Features, Classification and Retrieval, Springer.

5. Support vector machines;Hearst;IEEE Intell. Syst. Their Appl.,1998

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3