A Generative Approach for Document Enhancement with Small Unpaired Data

Author:

Uddin Mohammad Shahab1ORCID,Khallouli Wael2,Sousa-Poza Andres2,Kovacic Samuel2,Li Jiang1ORCID

Affiliation:

1. Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA 23529, USA

2. Department of Engineering Management & Systems Engineering, Old Dominion University, Norfolk, VA 23529, USA

Abstract

Shipbuilding drawings, crafted manually before the digital era, are vital for historical reference and technical insight. However, their digital versions, stored as scanned PDFs, often contain significant noise, making them unsuitable for use in modern CAD software like AutoCAD. Traditional denoising techniques struggle with the diverse and intense noise found in these documents, which also does not adhere to standard noise models. In this paper, we propose an innovative generative approach tailored for document enhancement, particularly focusing on shipbuilding drawings. For a small, unpaired dataset of clean and noisy shipbuilding drawing documents, we first learn to generate the noise in the dataset based on a CycleGAN model. We then generate multiple paired clean–noisy image pairs using the clean images in the dataset. Finally, we train a Pix2Pix GAN model with these generated image pairs to enhance shipbuilding drawings. Through empirical evaluation on a small Military Sealift Command (MSC) dataset, we demonstrated the superiority of our method in mitigating noise and preserving essential details, offering an effective solution for the restoration and utilization of historical shipbuilding drawings in contemporary digital environments.

Funder

U.S. Navy’s Military Sealift Command through CACI

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3