Securing the Internet of Health Things: Embedded Federated Learning-Driven Long Short-Term Memory for Cyberattack Detection

Author:

Kumar Manish1,Kim Sunggon1ORCID

Affiliation:

1. Department of Computer Science, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea

Abstract

The proliferation of the Internet of Health Things (IoHT) introduces significant benefits for healthcare through enhanced connectivity and data-driven insights, but it also presents substantial cybersecurity challenges. Protecting sensitive health data from cyberattacks is critical. This paper proposes a novel approach for detecting cyberattacks in IoHT environments using a Federated Learning (FL) framework integrated with Long Short-Term Memory (LSTM) networks. The FL paradigm ensures data privacy by allowing individual IoHT devices to collaboratively train a global model without sharing local data, thereby maintaining patient confidentiality. LSTM networks, known for their effectiveness in handling time-series data, are employed to capture and analyze temporal patterns indicative of cyberthreats. Our proposed system uses an embedded feature selection technique that minimizes the computational complexity of the cyberattack detection model and leverages the decentralized nature of FL to create a robust and scalable cyberattack detection mechanism. We refer to the proposed approach as Embedded Federated Learning-Driven Long Short-Term Memory (EFL-LSTM). Extensive experiments using real-world ECU-IoHT data demonstrate that our proposed model outperforms traditional models regarding accuracy (97.16%) and data privacy. The outcomes highlight the feasibility and advantages of integrating Federated Learning with LSTM networks to enhance the cybersecurity posture of IoHT infrastructures. This research paves the way for future developments in secure and privacy-preserving IoHT systems, ensuring reliable protection against evolving cyberthreats.

Funder

Seoul National University of Science and Technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3