A Multidimensional Framework Incorporating 2D U-Net and 3D Attention U-Net for the Segmentation of Organs from 3D Fluorodeoxyglucose-Positron Emission Tomography Images

Author:

Vezakis Andreas1ORCID,Vezakis Ioannis1ORCID,Vagenas Theodoros P.1ORCID,Kakkos Ioannis1ORCID,Matsopoulos George K.1ORCID

Affiliation:

1. Biomedical Engineering Laboratory, School of Electrical & Computer Engineering, National Technical University of Athens, 15773 Athens, Greece

Abstract

Accurate analysis of Fluorodeoxyglucose (FDG)-Positron Emission Tomography (PET) images is crucial for the diagnosis, treatment assessment, and monitoring of patients suffering from various cancer types. FDG-PET images provide valuable insights by revealing regions where FDG, a glucose analog, accumulates within the body. While regions of high FDG uptake include suspicious tumor lesions, FDG also accumulates in non-tumor-specific regions and organs. Identifying these regions is crucial for excluding them from certain measurements, or calculating useful parameters, for example, the mean standardized uptake value (SUV) to assess the metabolic activity of the liver. Manual organ delineation from FDG-PET by clinicians demands significant effort and time, which is often not feasible in real clinical workflows with high patient loads. For this reason, this study focuses on automatically identifying key organs with high FDG uptake, namely the brain, left cardiac ventricle, kidneys, liver, and bladder. To this end, an ensemble approach is adopted, where a three-dimensional Attention U-Net (3D AU-Net) is employed for robust three-dimensional analysis, while a two-dimensional U-Net (2D U-Net) is utilized for analysis in the coronal plane. The 3D AU-Net demonstrates highly detailed organ segmentations, but also includes many false positive regions. In contrast, 2D U-Net achieves higher reliability with minimal false positive regions, but lacks the 3D details. Experiments conducted on a subset of the public AutoPET dataset with 60 PET scans demonstrate that the proposed ensemble model achieves high accuracy in segmenting the required organs, surpassing current state-of-the-art techniques, and supporting the potential utilization of the proposed methodology in accelerating and enhancing the clinical workflow of cancer patients.

Publisher

MDPI AG

Reference32 articles.

1. Positron emission tomography provides molecular imaging of biological processes;Phelps;Proc. Natl. Acad. Sci. USA,2000

2. From RECIST to PERCIST: Evolving Considerations for PET Response Criteria in Solid Tumors;Wahl;J. Nucl. Med.,2009

3. Significance of machine learning in healthcare: Features, pillars and applications;Javaid;Int. J. Intell. Networks,2022

4. Challenge of prostate MRI segmentation on T2-weighted images: Inter-observer variability and impact of prostate morphology;Montagne;Insights Imaging,2021

5. Gradient-based learning applied to document recognition;Lecun;Proc. IEEE,1998

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3