Abstract
Unmanned aerial vehicles (UAV) have become vital targets in civilian and military fields. However, the polarization characteristics are rarely studied. This paper studies the polarization property of UAVs via the fusion of three polarimetric decomposition methods. A novel algorithm is presented to classify and recognize UAVs automatically which includes a clustering method proposed in “Science”, one of the top journals in academia. Firstly, the selection of the imaging algorithm ensures the quality of the radar images. Secondly, local geometrical structures of UAVs can be extracted based on Pauli, Krogager, and Cameron polarimetric decomposition. Finally, the proposed algorithm with clustering by fast search and find of density peaks (CFSFDP) has been demonstrated to be better than the original methods under the various noise conditions with the fusion of three polarimetric decomposition methods.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献