Artificial Neural Networks to Assess Emotional States from Brain-Computer Interface

Author:

Sánchez-Reolid Roberto,García Arturo,Vicente-Querol Miguel,Fernández-Aguilar Luz,López María,González Antonio

Abstract

Estimation of human emotions plays an important role in the development of modern brain-computer interface devices like the Emotiv EPOC+ headset. In this paper, we present an experiment to assess the classification accuracy of the emotional states provided by the headset’s application programming interface (API). In this experiment, several sets of images selected from the International Affective Picture System (IAPS) dataset are shown to sixteen participants wearing the headset. Firstly, the participants’ responses in form of a self-assessment manikin questionnaire to the emotions elicited are compared with the validated IAPS predefined valence, arousal and dominance values. After statistically demonstrating that the responses are highly correlated with the IAPS values, several artificial neural networks (ANNs) based on the multilayer perceptron architecture are tested to calculate the classification accuracy of the Emotiv EPOC+ API emotional outcomes. The best result is obtained for an ANN configuration with three hidden layers, and 30, 8 and 3 neurons for layers 1, 2 and 3, respectively. This configuration offers 85% classification accuracy, which means that the emotional estimation provided by the headset can be used with high confidence in real-time applications that are based on users’ emotional states. Thus the emotional states given by the headset’s API may be used with no further processing of the electroencephalogram signals acquired from the scalp, which would add a level of difficulty.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3