Dual-Input Isolated DC-DC Converter with Ultra-High Step-Up Ability Based on Sheppard Taylor circuit

Author:

Shen ,Chen ,Chen

Abstract

A dual-input high step-up isolated converter (DHSIC) is proposed in this paper, which incorporates Sheppard Taylor circuit into power stage design so as to step up voltage gain. In addition, the main circuit adopts boosting capacitors and switched capacitors, based on which the converter voltage gain can further be improved significantly. Since the proposed converter possesses an inherently ultra-high step-up feature, it is capable of processing low input voltages. The DHSIC also has the important features of leakage energy recycling, switch voltage clamping, and continuous input-current obtaining. These characteristics advantage converter efficiency and benefit the DHSIC for high power applications. The structure of the proposed converter is concise. That is, it can lower cost and simplifies control approach. The operation principle and theoretical derivation of the proposed converter are discussed thoroughly in this paper. Simulations and hardware implementation are carried out to verify the correctness of theoretical analysis and to validate feasibility of the converter as well.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Employing the Cascode Methods, A Transformer-Less High Voltage Gain Step-Up DC-DC Converter;Edison Journal for electrical and electronics engineering;2024-06-14

2. Dual Input Step-up Converter for Portable Devices;2024 Third International Conference on Power, Control and Computing Technologies (ICPC2T);2024-01-18

3. A Critical Comparison of the Cuk and the Sheppard–Taylor Converter;World Electric Vehicle Journal;2023-06-04

4. Design and analysis of a dual input quasi SB-SC cell high gain converter;International Journal of Electronics;2023-03-31

5. A Dual-Input Single-Output DC-DC Converter Topology for Renewable Energy Applications;IEEE Transactions on Industry Applications;2023-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3