Abstract
High-performance packet classification algorithms have been widely studied during the past decade. Bit-Vector-based algorithms proposed for FPGA can achieve very high throughput by decomposing rules delicately. However, the relatively large memory resources consumption severely hinders applications of the algorithms extensively. It is noteworthy that, in the Bit-Vector-based algorithms, stringent memory resources in FPGA are wasted to store relatively plenty of useless wildcards in the rules. We thus present a memory-optimized packet classification scheme named WeeBV to eliminate the memory occupied by the wildcards. WeeBV consists of a heterogeneous two-dimensional lookup pipeline and an optimized heuristic algorithm for searching all the wildcard positions that can be removed. It can achieve a significant reduction in memory resources without compromising the high throughput of the original Bit-Vector-based algorithms. We implement WeeBV and evaluate its performance by simulation and FPGA prototype. Experimental results show that our approach can save 37% and 41% memory consumption on average for synthetic 5-tuple rules and OpenFlow rules respectively.
Funder
National Natural Science Foundation of China
National University of Defense Technology
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Reference29 articles.
1. OpenFlow Switch Specificationhttps://www.opennetworking.org/software-defined-standards/specifications/
2. OpenFlow
3. Packet classification using multidimensional cutting
4. EffiCuts
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献