A Subthreshold Bootstrapped SAPTL-Based Adder Design

Author:

Zhang Qi,Wu Yuping,Chen Lan

Abstract

This paper proposes a 16 bit subthreshold adder design using bootstrapped sense amplifier-based pass transistor logic (bootstrapped SAPTL) to overcome serious performance degradation and enhance the immunity to process variations in the subthreshold region. Through employing a bootstrapped sense amplifier including a voltage boosting part and adopting an adder architecture based on bootstrapped SAPTL, significant improvements in performance and energy efficiency can be achieved. A case study of 16 bit adders in SMIC 130 nm technology demonstrated that the proposed adder outperformed other works in terms of performance, energy consumption, and energy efficiency. Furthermore, the statistical results of the Monte Carlo analysis proved the proposed adder’s significant enhancement of robustness against process and temperature variations. At 0.3 V (TT corner, 25 °C), the proposed 16 bit adder achieved improvements of 72% in performance and 8% in energy savings, as well as a 74% reduction in energy-delay production as compared with the current design.

Funder

National Science and Technology Major Project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3