Design and Construction of a Cost-Effective Didactic Robotic Arm for Playing Chess, Using an Artificial Vision System

Author:

del Toro Cristian,Robles-Algarín CarlosORCID,Rodríguez-Álvarez Omar

Abstract

This paper presents the design and construction of a robotic arm that plays chess against a human opponent, based on an artificial vision system. The mechanical design was an adaptation of the robotic arm proposed by the rapid prototyping laboratory FabLab RUC (Fabrication Laboratory of the University of Roskilde). Using the software Solidworks, a gripper with 4 joints was designed. An artificial vision system was developed for detecting the corners of the squares on a chessboard and performing image segmentation. Then, an image recognition model was trained using convolutional neural networks to detect the movements of pieces on the board. An image-based visual servoing system was designed using the Kanade–Lucas–Tomasi method, in order to locate the manipulator. Additionally, an Arduino development board was programmed to control and receive information from the robotic arm using Gcode commands. Results show that with the Stockfish chess game engine, the system is able to make game decisions and manipulate the pieces on the board. In this way, it was possible to implement a didactic robotic arm as a relevant application in data processing and decision-making for programmable automatons.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference57 articles.

1. From the First Chess-Automaton to the Mars Pathfinder;Kovacs;Acta Polytech. Hung.,2016

2. Cooperating with machines

3. Reconstructing Turing’s “Paper Machine”https://en.chessbase.com/post/reconstructing-turing-s-paper-machine

4. Computer chess: From idea to DeepMind1

5. Artificial Intelligence and Human Rights: Are they convergent or parallel to each other?

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3