A Smart Overvoltage Monitoring and Hierarchical Pattern Recognizing System for Power Grid with HTS Cables

Author:

Jiang KaihuaORCID,Du Lin,Wang Yubo,Li Jianwei

Abstract

As one part of the power system, high-temperature superconducting (HTS) cables may be subject to various system faults, such as overvoltage. When overvoltage occurs, HTS cables may quench and the resistance of HTS tapes will increase rapidly, which will result in reduction of transmission capacity, increase of power loss and even electrical insulation breakdown. To protect the operation safety of power system, the level of overvoltage should be investigated in the system. This paper proposes a non-contact variable frequency sampling and hierarchical pattern recognizing system for overvoltage. Lightning and internal overvoltage signals are captured by specially designed non-contact voltage sensors. The sensors are installed at the grounding tap of transformer bushings and the cross arm of transmission towers. A variable sampling technique is employed to solve the conflict between sampling speed and storage capacity. A hierarchical pattern recognizing system is proposed to subdivide each overvoltage into specific types. Seven common overvoltages are discussed and analyzed. Wavelet theory and S-transform singular value decomposition (SVD) theory are adopted to extract the feature parameters of different overvoltages. Particle swarm optimization is employed to maintain a high classification rate and improve the initial set of the support vector machine (SVM) used as recognition algorithm. Field-acquired overvoltage data from an 110 kV substation validate the effectiveness of the proposed recognition system.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3